PHYS 101 Formulae

Vectors are in **bold**

General equations and constants:

Solution to quadratic: $ax^2 + bx + c = 0 \implies x = (-b \pm \sqrt{b^2-4ac})/2a$

Law of cosines: $|\mathbf{a}+\mathbf{b}|^2 = a^2 + b^2 + 2abcos(\Theta)$

Acceleration due to gravity: $g = 9.8 \text{ m/s}^2$

Gravitational constant: $G = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2$

Mass of the Earth: $M_E = 6.0 \times 10^{24} \text{ kg}$

Moment of inertia of a point mass: $I = mr^2$

Moment of inertia of a sphere: $I = (2/5) \text{ mr}^2$ Speed of sound in air at sea level: v = 343 m/s

Speed of light $c = 3.00 \times 10^8 \text{ m/s}$ Threshold intensity of audible sound: $I_0 = 1.0 \times 10^{-12} \text{ W/m}^2$

Threshold pressure of audible sound: $p_0 = 3.0 \times 10^{-5} \text{ Pa}$

Index of refraction of water: n = 1.33Index of refraction of glass: n = 1.5

Motion at constant a: $v = v_0 + at$

 $x = x_0 + v_0 t + \frac{1}{2} a t^2$ $v^2 = v_0^2 + 2a (x-x_0)$ $v_{aver} = (v + v_0)/2$

Reference frames: $\mathbf{v}_{in frame A} = \mathbf{v}_{in frame B} + \mathbf{v}_{B in A}$

Newton's 2^{nd} law: $F = ma = \Delta p/\Delta t$

Force of friction $F_{friction} = \mu_{(kinetic, static)} F_N$

Centripetal acceleration $a = v^2/r$

Banked curve, frictionless surface: $\tan\Theta = v^2/(rg)$ Force of gravity: $F = G (m_1 m_2)/r^2$ Kepler's 3^{rd} law: $T^2/r^3 = 4\pi^2/(GM)$

Work: $W = \mathbf{F} \cdot \mathbf{d}$ Kinetic energy: $KE = \frac{1}{2} mv^2$ Work-energy $W_{net} = \Delta KE$

Gravitational potential: $PE_{grav} = mgh$ (near Earth's surface)

Elastic potential energy: $PE_{spring} = \frac{1}{2} kx^2$

Hooke's law: $F = -k \times$

Power: power = energy/time = $W/t = F \cdot v$

Linear momentum p = mv

Impulse: $\Delta p = F \Delta t$

Center of mass: $x_{CM} = (x_A m_A + x_B m_B + ...)/(m_A + m_B + ...)$

Linear and angular velocity: $v = r \omega$ Angular motion at constant α : $\omega = \omega_0 + \alpha t$

 $\Theta = \omega_0 + \omega_1$ $\Theta = \omega_0 + \frac{1}{2} \alpha + \omega_0^2$ $\omega^2 = \omega_0^2 + 2\alpha\Theta$ $\omega_{\text{aver}} = (\omega + \omega_0)/2$

Torque: $\tau = F_{\perp}r$

Newton's second law for rotation: $\tau = I \alpha$ $I = \Sigma m r^2$

Rotational kinetic energy $KE_{rot} = \frac{1}{2} I \omega^2$

Rotational (angular) momentum: $L = I\omega$

Frequency/period relationship: f = 1/T

Period of SHM (spring): $T = 2\pi J(m/k)$

Speed of object undergoing SHM: $v = \pm v_{max} \sqrt{(1-x^2/A^2)}$ $v_{max} = 2\pi A/T$

Maximum acceleration: $a_{max} = (k/m) A$

Sinusoidal motion of SHM: $x = A \sin(2\pi t/T) = A \sin(\omega t)$

Pendulum SHM: $T = 2\pi J(L/q)$

Wave speed, wavelength, frequency: $v = \lambda f$

Speed of wave on a cord: $v = \sqrt{(F_T/[m/L])}$ Intensity of wave: $I = 2\pi^2 v \rho f^2 A^2$ $I = p^2/(2v\rho)$

Standing waves on string: $\lambda_n = 2L/n$ Reflection: $\Theta_{inc} = \Theta_{ref}$

Refraction (waves): $v_1 \sin(\Theta_2) = v_2 \sin(\Theta_1)$

Sound intensity (decibels) $\beta = 10 \log (I/I_0) = 20 \log (P/P_0)$

Harmonics of open tubes: $f_n = nf_1 = n (v/2L)$ for n=1,2,3... Harmonics of closed tubes: $f_n = n f_1 = n v/4L$ for n=1,3,5...

(only odd harmonics)

Beat frequency: $f_b = |f_1 - f_2|$

Doppler shift: $f' = f \left[\frac{1}{1 \pm (v_{source}/v_{wave})} \right]$

(source moving away from(+)/towards(-) observer)

 $f' = f \left[1 \pm (v_{obs}/v_{wave})\right]$

(observer moving towards(+)/away from(-) source)

Focal length of spherical mirror: f = r/2

Mirror and lens equation: $1/f = 1/d_o + 1/d_i$

PHYS 101 December 2008

Magnification: $m = h_i/h_o = -d_i/d_o$

Index of refraction: $n = c/v_{light}$

Snell's law of refraction: $n_1 \sin(\Theta_1) = n_2 \sin(\Theta_2)$

Critical angle for TIR: $sin(\Theta_c) = n_2/n_1$

Lens power: P = 1/f

Diffraction around object: $\Theta_{diff} \approx \lambda/D$

Constructive interference (2-slit): $d \sin(\Theta) = m \lambda$ m = 0,1,2...Destructive interference (2-slit): $d \sin(\Theta) = (m + \frac{1}{2}) \lambda$ m = 0,1,2...

Single slit diffraction minima: $D \sin(\Theta) = m \lambda$ m = 1,2,3... (not 0!)

Diffraction spot size/resolution: $\Theta = 1.22 \lambda/D$

PHYS 101 December 2008